Esophagogastric leakage following an esophagectomy in a common cause of morbidity and mortality. Its incidence varies according to the series, ranging from 5% to 25%. In order to decrease fistula rates, many investigators tried to find the source of this problem in order to avoid it. One of the most important factors leading to fistula formation is a low vascular flow, that interferes with the healing process [4–6]. It has also been described that a drop in the vascular flow occurs immediately after its tubulization, and stays stable after its ascension through the thorax up to the neck [7].
Some investigators have performed a gastric devascularization and delayed for 2–3 weeks the anastomosis, finding a better outcome in terms of fistula formation in these animals [11] while others [9, 10] used arterial embolization to create a gastric conditioning and applied it in the clinical setting.
The physiologic mechanism of neovascularization development in tissue conditioning has been well described with an analogous procedures. The skin flap transposition for cutaneous reconstruction [13] is an example. In these studies, the flap was partially devascularized and mobilized, and after 2–3 weeks, the skin flap was transposed. Flap necrosis and wound dehiscence were reduced.
In an attempt to decrease the vascularization of the fundus at its best, during the first procedure, we partially transected the stomach as it would be done for a gastric tubulization during an esophagectomy in addition to its devascularization (sectioning of the gastroepiploic, short gastric and left gastric pedicle) and mobilization. In this way, the submucosal vascularization would be reduced, producing a greater ischemic conditioning.
The macroscopic and microscopic examination of the fundus, as well as the measurement of the vascular flow with a laser doppler (PeriMed, Oh, US) with an endoscopic probe, helped us in assessing the effectiveness of the devascularization and neovascularization process.
Potential complications of the procedure we have performed in the series include the ones related to the devascularization and transection processes, and include gastric ulceration and necrosis (devascularization process) and fistula formation secondary to a failure of the stapler line (transection process). None of these complications were present in the ten animals. Besides, though it is not an identical -but similar- procedure, these complications are not widely described in patients operated on for a Collis-Nissen operation.
Regarding the time we took to delay the second procedure, we decided to perform it three weeks after the first one. Our explanation to this relies on previous studies [13] and on the potential clinical application of this "two stage" procedure. One can hypothesize that during the first laparoscopic procedure, the surgeon can perform a diagnostic laparoscopy, the devascularization and partial transection procedure and then, the placement of a feeding jejunostomy. If the patient has metastasis or the tumor is unresectable, no further operation is required. On the other hand, if the patient is suitable for an esophageal resection, a second operation will have to be done. A three week period is a reasonable procedure to feed the patient (most patients with esophageal cancer are malnourished) and allow the stomach to develop neovascularization. Here, another question rises. Is a three weeks period, the top of the curve of the neovascularization process? We do not have that answer, but we think that a three week period is transposable to the clinical setting in both oncological and neovascularization process point of view. As stated before, the first articles reporting conditioning of skin flaps used a 2–3 weeks period, reaching good results in terms of wound healing and avoidance of necrosis [13], and Akiyama et al [9] stated that a minimum period of one week is needed to neovascularize the embolized stomach.